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Extended Thermodynamic Description of 
Viscoelastic Materials and Dilute Polymer 
Solutions 1 

G. Lebon 2 and J. Casas-Vfizquez 3 

It is shown that extended irreversible thermodynamics provides a simple and 
coherent modeling of viscoelastic bodies and dilute polymer solutions. The basic 
hypothesis underlying the present formalism is to raise, respectively, the inelastic 
stress tensor or the viscous stress tensor to the status of an independent variable 
in addition to the standard variables. Concerning viscoelasticity, the Poynting- 
Thomson, Maxwell, and Kelvin-Voigt models are recovered as particular cases 
of the formalism. More complicated models, such as Jeffrey's model, can also be 
obtained. For dilute polymer solutions, one recovers the relaxational spectrum 
of viscous modes. In particular, our description encompasses the Rouse model. 

KEY WORDS: polymer solutions; irreversible thermodynamics; visco- 
elasticity. 

1. I N T R O D U C T I O N  

Dur ing  the last three decades, several a t tempts  have been made to describe 

the behavior  of viscoelastic materials within the framework of a thermo- 

dynamic  theory. The major i ty  of publ icat ions is either inspired by the 
so-called ra t ional  the rmodynamics  [1]  or based on the classical for- 
mula t ion  of irreversible thermodynamics  [2] .  

Recently, a new approach to nonequi l ib r ium processes has received 
increasing a t ten t ion  [3 ]  and  has been called extended irreversible thermo- 
dynamics  (EIT). Wi th in  this formalism, in contrast  with the previously 

l Invited paper presented at the Tenth Symposium on Thermophysical Properties, June 
20-23, 1988, Gaithersburg, Maryland, U.S.A. 

2 Universit6 de Li6ge, Institut de Physique, B5 Sart Tilman, B-4000 Li6ge, Belgique. 
3 Divisi6n Fisica Estadistica, Departamento de Fisica, Universidad Aut6noma Barcelona, 

08193 Bellaterra, Barcelona, Espfina. 

1003 

0195-928X/88/1100-1003506.00/0 �9 1988 Plenum Publishing Corporation 



1004 Lebon and Casas-Vfizquez 

mentioned theories, the thermodynamic fluxes (namely, the heat flux, the 
diffusion fluxes, the viscous stress) are not considered as dependent 
variables but are treated as independent variables like the usual ones 
(density, deformation, temperature). 

Whereas the evolution equations for the usual variables are related to 
general conservation laws, no general criteria exist concerning the 
evolution equations of fluxes: their specific form depends on the class of 
materials to be described and on restrictions imposed by the second law of 
thermodynamics and the stability property of the equilibrium state. 

EIT avoids the paradox of propagation of signals with an infinite 
velocity and its foundations have been interpreted within the kinetic theory 
of gases and the theory of fluctuations. It is particularly well suited for 
describing phenomena involving short characteristic times and wavelength. 
(A detailed account is given in Ref. 3.) 

On the other hand, a challenge in nonequilibrium thermodynamics is 
to determine the theoretical tools to treat and predict the properties of 
polymer suspensions. A general description of the wide variety of these 
important systems is still lacking. The great complexity of the structure of 
the polymer chains in solution is the reason the theory has developed 
slowly. Our objective in this paper is rather limited: to show that EIT 
allows the interpretation of the relaxational spectrum exhibited by the 
stress in dilute polymer solutions. Our analysis is based heavily on the 
Rouse model [4], which provides a starting point for more realistic 
approaches. 

The paper runs as follows. The thermodynamical model is presented in 
Section 2, and some generalizations are discussed in Section 3. Section 4 is 
devoted to a brief description of the Rouse model and the derivation of the 
evolution equations of the internal modes. 

2. EIT OF VISCOELASTIC BODIES 

2.1. Constitutive Equations 

For the sake of simplicity, we restrict our analysis to isotropic bodies, 
in absence of heat flux and undergoing infinitesimally small deformations. 
Extensions to more general situations (anisotropic systems, heat flux, large 
deformations) should not raise fundamental difficulties. 

In viscoelasticity, it is common to decompose the symmetric stress 
tensor into an elastic ~' and an inelastic ~" part, 

,~= ~'+,~" (1) 
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where o' obeys Hooke's law: 

~' = 2G~ + 2(tr ~)u (2) 

Here 2 and G are Lam6's coefficients and a is the symmetric strain tensor, 
defined in Cartesian coordinates by 

~0 = ~-(ui,: + u:,i) (3) 

where u is the deformation vector, and a comma means a derivation with 
respect to the space variable; later, an over dot will denote the material 
time derivative, U is the limit tensor. 

By analogy with the treatment of a viscous fluid, we choose as basic 
variables the rate of deformation 6, the temperature T, and the inelastic 
stress o". The reasons for selecting ~" as the supplementary variable are 
found in the general axioms underlying EIT. Indeed the latter demands 
that the set of conserved classical variables be completed by variables 
taking the form of dissipative fluxes, vanishing at equilibrium. Clearly, a" 
meets these requirements; this would not be the case for the total stress o, 
as it does not vanish at equilibrium. It is also emphasized that, in contrast 
with earlier works [2] ,  decomposing the strain tensor into an elastic and 
an inelastic part is not required. 

The behavior of the classical variables /i and T is governed by the 
usual balance laws of momentum and energy: 

p/~, = a,j,, + pf~ (4) 

P f i  = - - q  i, i 4- 6 ij~ij (5) 

The summation convention on repeated indices is used throughout this 
paper. In Eqs. (4) and (5), p is the density, f~ the body force, q~ the heat 
flux vector, whose role is omitted in the present analysis, and u the specific 
internal energy to be given by the constitutive relation 

u = u ( r ,  eO, a~) (6) 

That the extra variable a~ enters in the constitutive equation besides the 
classical T and e 0. corresponds to the line of thought of EIT. 

In parallel with the classical balance laws, Eqs. (4) and (5), it is 
assumed that the supplementary variable a~ or, equivalently, its isotropic 
and deviatoric parts a" and ~ satisfy balance equations of the form 

6-" = Jk, k + S (7) 
,t." r !  - -  . 

a~ - J~o)k,k + S(i.:) (8) 
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where Jk and J0~ are flux terms, while S and S~ are source terms, and 
parentheses mean a traceless symmetrization. This formulation is also sup- 
ported by the kinetic theory of gases [5]. In order for the description to be 
complete, it remains to express these fluxes and sources in terms of the 
basic set of variables by means of constitutive equations: 

J k =  Jk( T, ~l i, a n, ff ~) 

= J0 , (T,  ai, 
(9) 

S = S (T ,  ~li, ff,t ~/j) 

S o = So(T, ft~, a", ff~) 

The most general relations compatible with a linear analysis are 

Jk = (tl/%) ilk+ O(2) (10) 

J0k = (0/?,) fi;ajk + 0(2) (11) 

S = - (1 /%)a  + 0(2) (12) 

S o = -(1/'?,) 6~ + O(2) (13) 

%, g~, t/, and O are undetermined coefficients which may depend on the 
temperature. Substitution of Eqs. (10) and (12) in Eq. (7), and Eqs. (11) 
and (13) in Eq. (8), respectively, results in the following field equations for 
the extra variables: 

~a'.'.=~ -aa'"+~/~o (14) 

~ " =  - a "  + t/~ (15) 

Elimination of a and ff~ between Eqs. (14) and (15) and Eqs. (1) and (2) 
yields 

" ? ~  = 2G(go + ~ o )  (16) 

%~ + a= 3K(e + %~) (17) 

where K, g~, and % stand, respectively, for 

K=,~+  (~)G (18) 

g~ = (0/2G) + g~ (19) 

% = (t//3K) + % (20) 

It is worth noticing that the relations (16) and (17) are the constitutive 
equations for a Poynting-Thomson body and that these relations arise 
naturally from our thermodynamical model. 
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The following particular cases are also of interest. By setting f~ = 0 in 
Eq. (16), one obtains 

06 = 2Gg6 + 0~6 (21) 

Equation (21) is representative of a Kelvin-Voigt body. 
If in Eq. (16), one assumes that G = 0 ,  which means that the total 

stress has only an inelastic contribution, one recovers the basic equation of 
Maxwell's model, namely, 

f~a~j + 66 = 0g 6 (22) 

The above reasoning is also directly applicable for deriving the 
constitutive relations of a viscous fluid. It suffices in the previous relations 
to perform the identifications 

, 1~ . _ p V  a6=-Pe66 ,  (~ja = (23) 

where Pe and pV are the equilibrium (or hydrostatic) and viscous pressure, 
respectively. Equations (14) and (15) can then be written as 

" " . . . .  =fi~6 (24) ~r + ff 6 

~pv + pV = _(�89 #v~, (25) 

where V 6 is the symmetric velocity gradient tensor, /7 the shear viscosity, 
and # the bulk viscosity. By letting, in Eqs. (24) and (25), the relaxation 
times ~ and ~ go to zero, one recovers the usual Stokes-Newton relations. 

Although in ordinary fluids, the relaxation times z~ and ~ are very 
short (10 -12 to 10 -14 S) SO that it is justified to use the classical Stokes- 
Newton equations, this is no longer true in viscoelastic materials, for which 
the relaxation times are very much longer. As a matter of fact, for a 
high-density polyethylene at 200~ one has calculated that g~ is 10 -2 s, 
while for a polystyrene at 200~ g~ is of the order of the unit; it may even 
raise up to g~ = 102 s for a polyisobutylene solution in oil [6]. 

2.2. Entropy Production and Restrictions Imposed by the Second Law 
of Thermodynamics 

It is postulated that there exists a regular and continuous function, the 
specific entropy, given by the constitutive equation 

s=s(T, e6, a~) (26) 

840/9/6-8 
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and obeying a balance equation of the form 

p~= -J~,i+ # s, (6s/>0) (27) 

where #s is the entropy production, supposed to be nonnegative, while j s  is 
the entropy flux. In the absence of heat flux, it has been shown that the 
entropy flux is zero [7]. 

For further purposes, it is useful to introduce the Helmholtz free 
energy f, defined by 

f =  u - Ts (28) 

with, according to Eqs. (6) and (26), 

f = f (T ,  eo, a/j) (29) 

Removing ~ between Eq. (27) and Eq. (28) results in the following 
expression of the entropy production: 

Tff s = - p f  - psi '+ au~ u >I 0 (30) 

where use is made of the energy balance, Eq. (5), with qi=0. Using the 
chain differentiation rule to calculate f, one obtains 

ka~,j p ) \ae p 

#t - p  3ff~a,j-p~-~a,,~f "" ~f a " + S a  ~+6agu>~0 (31) 

Assuming that the dependence of f with respect to the standard variables T 

and asj is the same as in thermostatics, one has 

aflaT= - s  (32) 

8f/Sa = (l/p) a' (33) 

8flOe,j = (lip) 8,~ (34) 

The entropy inequality, Eq. (31), then simplifies as 

. . . .  .. af  + P (a" 0~fa 1 . . . .  . />o ( 3 5 )  

For isotropic systems, the most general form for f is given by 

K ~ L .... 
p f  =-~ es + Ggijgij.-~.- 7 ffijaij . . . .  . . . . . .  +-~a a + Aaijeu 

+ yo-s + 0(3) (36) 
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where the various parameters may depend on the temperature. However, 
from Eqs. (33) and (34) it is inferred that the coefficients A and 7 are zero. 
Substitution of Eq. (36) in Eq. (35) results in 

~lauao.+ao.eijre 1---~- re re />~0 (37) 

Positiveness of Eq. (37) demands that 

0 = ('g~/d) ~> 0, 17 = (r~/3L) >~ 0 

Supplementary restrictions are imposed by the 
stability of equilibrium. Expanding f around equilibrium, for fixed values 
of the temperature and the strain, gives 

f = f e  + 6~ + -  l- .77-.,,-/ 60.6kt 2 ~(7ij ~(7kl~e 

q- ( ~ )  e a" + ~ a , , 2 )  [ O2f\ (39) 

Using Eq. (36), this relation takes the form 

p f  = i - ~ "  ~ , ,  Pf e + 2da ija ij q- �89 " + 0(3) (40) 

Recalling that at equilibrium and fixed values of T and eij, f is minimum, it 
is inferred from Eq. (40) that 

~/>~0 and L~>0 (41) 

Combining these inequalities with Eq. (38), it is checked that the relaxation 
times are positive quantities: 

~?~/> 0 and re ~> 0 (42) 

(38) 

requirements of 

2.3. The Gibbs Equation 

In standard irreversible thermodynamics, the cornerstone is the Gibbs 
equation, which is the same as that in equilibrium. In view of the previous 
results, the generalized Gibbs equation can be written as 

df = -sdT+(1/p)a~de~+(~e/p~l)6~d~+(z~/pt/)a"da" (43) 

In terms of the internal energy and the time derivative, Eq. (43) reads 

ti = T~ + (l/p) aoeij + ({~/pfl) aij(~ij -~- (re/jOt/) O-"dt' (44) 
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It is interesting to formulate the Gibbs equation in the particular cases 
of a Kelvin-Voigt and a Maxwell body. A Kelvin Voigt material being 
defined by ~ = ~ = 0, expression (44) reduces to 

fi= T~+ (l/p) a~).i,j (45) 

In order to derive the Gibbs equation for a Maxwell body, it must be 
recalled that the latter is defined by G = 0 or, equivalently, by identifying 
the inelastic stress tensor with the total stress. Taking the evolution 
equation, Eq. (22), into account, the Gibbs relation, Eq. (44), reads 

= T~ + (l/p) 00.[g ~ -  (1/7/) ~u] + (l/p) a[~ - (1/M)a ] (46) 

At this point, we define an inelastic strain tensor e~ through the relations 

~ = (1/7/) 6/j, ~"= (1/r/)a (47) 

After substitution in Eq. (46), one obtains, finally, 

fi= T~+ (I/p) ~j,~. (48) 

where use has been made of the decomposition 
! t t  e 0. = e~j - e~j (49) 

The results, Eqs. (45) and (48), are well known and were derived a few 
years ago [2] in a less general context than here. 

3. SOME GENERALIZATIONS 

Instead of writing the evolution equation of the stress tensor in the 
form of a differential equation, it is tantamount to formulate it in integral 
form. It is well known that Eq. (14) is equivalent to 

f' a~ = K ( t -  t') ~o.(t') dt' (50) 

where the relaxation modulus K ( t - t ' )  stands for 

K(t - t') = (r//z~) exp[ --(t - t')/z,] (51) 

In this section, bulk effects are neglected and the various tensors may be 
considered as deviators; tildas are also omitted. 

A natural extension of Eq. (50) is provided by 

S au=2G~ij+ K( t - t ' )~u ( t ' ) d t '  (52) 
- - i x 3  
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where the memory function K ( t - t ' )  is not necessarily represented by a 
simple exponential. Relation (52) is particularly well adapted for describing 
rheological materials [6]. 

It is worth repeating that a relation such as Eq. (52) is strictly com- 
patible with EIT. Like any other thermodynamic theory, our formalism is 
not able to provide the most suitable analytical form for the function 
K ( t -  t'). Clearly experimental observation is the most appropriate guide in 
formulating an expression for the relaxation modulus. It nevertheless 
remains true that a thermodynamic description is very fruitful in that it 
eliminates various forms for K ( t - t ' )  which are not compatible with the 
second law and because it imposes restrictions on the signs of the coef- 
ficients appearing in the constitutive and evolution equations. 

Another interesting extension is provided by the following model, 
which is a coupling of a Navier-Stokes viscous fluid and the material 
described in Section 2.1. Let us write for the stress tensor a relation of the 
form 

~ij= a,.)+ o,3. (53) 

where a,~ is the viscous stress tensor given by 

~,.)=~. (54) 

with/~ the shear viscosity, while a} is supposed to be formed of an elastic 
and an inelastic part, 

o}= 2Geo+ oj (55) 

The above modeling is useful for describing dilute solutions of polymers 
[8]" a} is the contribution of the solvent at zero dilution and a R is the 
mean stress tensor for the medium formed by the interacting polymer 
molecules (see Section 4). Repeating the reasoning in Section 2 with fii, and 
o~ as basic variables, we are led to a relaxational equation for the stress 
tensor a R expressed by 

�9 i I  I I  

~a~ = - a  o + tl~o (56) 

q represents the polymer contribution to the viscosity when relaxational 
effects are absent. The relaxational property of a~ was still observed 
by Volkov and Vinogradov [9], who worked in a completely different 
context. By taking the time derivative of Eq. (53) and eliminating a~ by 
means of Eq. (56), one obtains 

z(~ ~ + cqs = 2Geij + 2G[v + (r/+/~)/2GI ~is + z#gij (57) 
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Setting G = 0  in Eq. (57) yields 

~6- 0 + 0 0 = (r/+/~) ~j + z/~g~ (58) 

which is nothing but Jeffrey's model, while by letting/~ = 0, one recovers 
the previous model expressed by Eq. (16). 

It follows from the above considerations that EIT provides a 
systematic way for deriving the classical equations of viscoelasticity. In 
addition, it emerges in new results such as Eq. (57), which may be useful 
for describing solutions of polymers and which contains, as particular 
cases, the models of Jeffreys and Poynting-Thomson. 

4. DI LUTE POLYMER SOLUTIONS 

4.1. The Rouse Model 

One of the simplest models for dilute polymer solutions was presented 
by Rouse [4]. It is supposed that small quantities of macromolecules are in 
suspension in a Newtonian solvent; the macromolecules do not interact 
between them and are modeled by a chain, composed of a given number of 
subchains, which are themselves viewed as formed by beads and springs. 

Each bead of the polymer chain suffers a drag effect from the fluid in 
addition to Brownian motions. The beads are linked by Hookean springs 
to provide the elastic forces which elongate the macromolecules. In this 
model, the hydrodynamic effects between individual beads are 
uncorrelated. The complex motions of the individual parts of the chain are 
described by means of normal coordinates obeying a relaxational dynamics 
with different times of relaxation. 

Upon the action of a shear, the system undergoes a stress ~ which is 
decomposed into two parts, 

o = ~ s + o  p (59) 

where the superscripts s and p denote contributions of the solvent and the 
polymer, respectively. In the Rouse model, the last term is written as 

N 
~P=  ~ O'~ (60) 

~ 1  

where the contributions of the N normal modes are added. Moreover, in 
the linear regime, each individual model ~ satisfies a relaxational equation 
of the form 

~6~ + ~ = r/~V (61) 
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in which z~ is the time of relaxation of the e mode, r b the viscosity 
corresponding to the e mode, and V the symmetric velocity gradient. 

As usual in fluid mechanics, we can split the total stress tensor 
according to 

~ =  ( - p + p ~ ) U + ~ r  ~ (62) 

where p is the hydrostatic pressure, pV the bulk viscous pressure, and gv the 
shear stress. 

4.2. EIT Description 

In order to be brief, thermal effects are not considered. The basic 
hypothesis underlying EIT is that the specific entropy s of a system out of 
equilibrium depends locally not only on the natural variables u and v but 
also on the dissipative fluxes a v and a~,~v i.e., 

s =s(u, v, av, 6v) (63) 

v denotes the specific volume (v = p 1). This function is assumed to be 
analytic in the fluxes and therefore 

~?s #s ~ Os dav + ~ ~3~ . d& (64) dS= ~u dU +-~v dV + Oa---~s 

By analogy with classical irreversible thermodynamics, we adopt the 
following definitions of an (nonequilibrium) absolute temperature T and a 
(nonequilibrium) pressure p [-3]: 

3s/~3u = T-l(u, v, a;, ~ )  (65) 

~ v  3s/~3v = T lp(u, v, a v, ~ )  (66) 

The remaining derivatives are denoted by 

Os/O,r v = T - l v T ~ ( u ,  v, ~r~, ~v) 

~ v  ~ v  

(67) 

(68) 

with c~ running from 0 to N, and index 0 referring to the solvent. 
At the lowest linear order of approximation, the dissipative coefficients 

7~ and {~ are written simply as 

N N 

7~ = ~ 7~a~,  ~ =  ~ ~ p ~  (69) 
/~=o ~ = o  
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Here the coefficients 7,, and ~ ,  depend eventually on the temperature and 
density. It is known that in the Rouse and other hydrodynamical models of 
polymer suspensions, the dissipative contributions are not coupled; more 
precisely the solvent does not interact with the polymer chains and the 
normal modes are independent of each other and of the solvent. Under 
these simplifications, Eq. (69) reduces to 

m v y~ - y~a~, ~ = ~ ( 7 0 )  

Substituting these relations in Eqs. (67) and (68), we obtain for the time 
derivative of entropy, 

N N 

T~=fi+pi~+v ~ 7~a~a~+v ~'v Z ~ ~v.~va~.o~ (71) 
~ r  o c = O  

Inserting now the balance equations of mass and interval energy and 
bearing in mind that in the absence of a heat flux vector q, the entropy flux 
J~ is zero, the entropy production a s is easily derived by comparison with 
the balance equation of entropy. Up to second order, one has 

N N 
�9 v l ~ v .  ~ "L'v 6s= 2 r ' a v ( V . v - 7 ~ a ~ ) +  ~ T- . ~ . ( V - ~ )  (72) 

~ r  ~ = 0  

which may still be written as 

N N 

~= ~ X~a~ + ~ Y~:~ (73) 

where X~ and Y~ can be identified as force conjugates to the fluxes a~ and 
~v. Since a ~ is a scalar function, the representation theorems of isotropic 
functions impose an expression of the form 

N N 

6 s= ~' l~a~a~+ ~ m~o~.a~-~"~ (74) 
~ = 0  ~ r  

Direct comparison of these two expressions suggests that 

l~o-~  = T - l ( V - v  - ~ , ~ )  

m~6 =T-I(~-  ~'~ -v ~ )  
(75) 

Under stationary conditions, Eqs. (75) must reduce to the results of 
classical irreversible thermodynamics: a v =~/~V .v, o,-~v_ 2#~V. This allows 
us to identify l~ and m~ as (Tt/~) -I and (2T#~) -1, respectively. Moreover, 
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since Eqs. (75) are of the relaxation type, it is convenient to introduce 
relaxation times through 

z~ = 7 ~ / T I ~  (76) 

z'~ = ~ / T m ~  (77) 

Using Eqs. (76) and (77), expressions (75) take the familiar Maxwell form. 
Assuming with Rouse that the solvent may be considered as a 

Newtonian fluid, which means that ~o ~ ~ and ~)~  z'~, one obtains the 
following set of equations for the various stresses: 

a~) = r/oV. v (78) 

r~d v + ~ = ~ V .  v (79) 

5~) = 2/~o9 (80) 

,~v -v 2y~9 (81) 

where ~ runs now from 1 to N. These relations bear strong resemblances to 
the Rouse equations which were derived from statistical arguments. It is 
worth noting that Rouse results are here derived on macroscopic bases, 
and in addition to the Rouse approach, equations for the bulk viscosities, 
Eqs. (78) and (79), are also obtained. 

5. CONCLUSIONS 

The description of viscoelastic materials within the framework of 
extended irreversible thermodynamic has been the subject of recent papers 
[-10]. These concern only Maxwell's body. A more complete description is 
given in Ref. 11. However, the rationale behind this work, its objectives, 
and the choice of the basic variables are entirely different from the line of 
thought of the present article. 

It is also worthwhile to compare the merits of EIT with the hidden 
variable theory (HVT) [12], which fueled much interest during the last 
decade. In EIT, the physical nature of the extra variable is known from the 
onset, which is not necessarily true in HVT. In contrast with the latter for- 
malism, the variables introduced in EIT take part in the mechanical work 
and the heat input; in HVT, the basic variables do not appear in the 
balance equations. Moreover, since the selection of the hidden variables is 
not regulated by strict rules, the same class of materials can be described 
by several formalisms. In EIT, the selection of the variable is unequivocal, 
as it consists of the dissipative part of the fluxes appearing in the usual 
balance laws. 
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It is also relevant to point out that the postulates behind EIT have 
been supported by the kinetic theory, generalized hydrodynamics, and the 
statistical theory of fluctuations [-3]. To our knowledge, the foundations of 
HVT did not receive comparable physical support. 

Another main conclusion of the present work is that the usual relax- 
ational scheme of viscous modes in polymer solutions can be accounted 
for by means of EIT. This theory predicts, as a natural consequence, a 
relaxational spectrum for the stress tensor. 
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